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Precipita)ng	  regions	  can	  be	  classified	  into	  two	  basic	  types	  –	  convec)ve	  
or	  stra)form	  –	  with	  very	  different	  proper)es.	  	  
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Physically-‐based	  retrievals	  are	  cri)cally	  dependent	  on	  the	  assump)ons	  
that	  went	  into	  building	  the	  retrieval	  database	  (the	  rela)onship	  between	  
the	  observables	  and	  the	  parameters	  of	  interest).	  
The	  cri)cal	  assump)ons	  that	  affect	  rain	  retrievals	  from	  microwave	  
observa)ons	  vary	  significantly	  as	  a	  func)on	  of	  the	  rain	  type.	  

A	  cri)cal	  step	  toward	  improving	  rain	  es)ma)on	  from	  passive	  microwave	  
observa)ons	  requires:	  	  
i)  developing	  the	  ability	  to	  dis)nguish	  the	  dominant	  type	  within	  each	  

satellite	  Field-‐Of-‐View;	  and	  	  
ii)  the	  design	  of	  appropriate	  retrieval	  databases	  that	  reflect	  these	  basic	  

differences.	  	  

•  Convective and 
stratiform regions 
are characterized 
by different: 
• dynamics, 
• microphysical 
processes 

• spatial variability. 
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Developing	  a	  passive	  microwave	  algorithm	  for	  	  
precipita)on	  detec)on	  and	  classifica)on	  :	  Approach in Developing the Synthetic Data 

R
ai

n 
R

at
e 

Rain	  Index	  from	  TBs	  
	  at	  Satellite	  resolu5on	  

“Truth”  
at Model Scale

“Truth”  
At Satellite Scale

The Algorithm 

1	  

Developing	  a	  passive	  microwave	  algorithm	  for	  	  
precipita)on	  detec)on	  and	  classifica)on	  :	  The Algorithm 

-  Linear discriminant analysis (LDA) is 
used to find a linear combination of 
features (variables/predictors) which 
characterizes or separates two or more 
classes of objects or events..  

-  LDA is a type of principal component 
analysis that seeks to reduce 
dimensionality while preserving as 
much of the class discriminatory 
information as possible.  

-  Therefore, we are looking for a 
projection where examples from the 
same class are projected very close to 
each other and, at the same time, the 
projected means are as farther apart as 
possible. 

-  Our research has suggested that we can combine  the observed 
TBs  to form several indices that carry significant information reg
arding the existence and the type of precipitation.  

-  Here we use the LDA to optimize the threshold values for a num
ber of components of the Rain Index and it’s spatial variability.   

-  We use all these components to form the discriminant function in
 the LDA context. 

1	  

Developing	  a	  passive	  microwave	  algorithm	  for	  	  
precipita)on	  detec)on	  and	  classifica)on	  :	  Approach in Testing the Algorithm with PR data 

1. Collocation PR-TMI:  
around	  every	  TMI	  footprint,	  find	  	  
•  the	  closest	  PR	  footprints	  and	  	  
•  the	  neighbouring	  3x3	  PR	  footprints	  	  

2. Collect all (~9) radar 
(PR) profiles that fall 
within a radiometer (TMI) 
footprint.  

Build CFADs and compare them 

Developing	  a	  passive	  microwave	  algorithm	  for	  	  
precipita)on	  detec)on	  and	  classifica)on	  :	  Validation with Synthetic Data 

The comparison of the vertical profiles for each of the  three classes 
shows an improvement with respect  to the “truth” as compared to an 
earlier version that did not use the LDA approach.   

 
This is illustrated by the double-sided arrows (color-coded by the 
precipitation class) which are always shorter for v26 as compared to 
those for v23, meaning that the v26 profiles are closer to the truth.  

Performance	  of	  the	  LDA	  version	  (v26)	  of	  the	  PMW_CLASS	  algorithm	  as	  
compared	  to	  the	  “truth”	  	  (determined	  from	  the	  model,	  in	  the	  first	  row)	  and	  to	  
the	  performance	  of	  the	  older	  non-‐LDA	  version	  v23	  (in	  the	  second	  row).	  	  The	  
comparison	  is	  done	  in	  terms	  of	  the	  2D	  maps	  (first	  column)	  and	  mean	  profiles	  of	  
ver)cal	  velocity	  (second	  column),	  cloud	  liquid	  water	  (third	  column)	  and	  cloud	  ice	  
(fourth	  column).	  	  The	  convec)ve	  regions	  are	  marked	  in	  red,	  the	  stra)from	  mixed	  
are	  in	  blue	  and	  the	  clear	  are	  in	  black.	  	  

CFADs of reflectivity from 
PMW_CLASS v18 (in red) 
are compared to the three 
different ways of defining 
the representative PR class 
(in green). Top row is a 
comparison to PR1, middle 
row compares to PR2 and 
third row compares to PR3. 
Solid line shows the median 
while the two dashed lines 
show the 5th and the 95th 
percentile of the 
distributions. Each column 
presents the statistics for a 
different precipitation class: 
Convective-first; Stratiform-
second; Mixed-third; Clear-
fourth.  

-  Computed the CFADs for each of the different precipitation classes.   
-  Compare them to the 3 different versions of the PR “truth” - 3 different ways for accounting for the sub-grid vari

ability, marked PR1, PR2 & PR3.  
-  Comparing the three rows below suggest that the “Modal” classification of the PR sets (PR1, in the top row) is 

the most different one.   
-  This is illustrated most prominently by the statistics of the “Mixed” class. 
-  The most striking difference is in the percent of cases in this class as it would be depicted by the PR1 de

finition – only 0.8% of all cases (number in green at the top of this box). At the same time PR2 and PR3 
definitions of the     “truth” (both considering the convective/stratiform fractions) show a much larger perc
entage of this class (20.7% for PR2 and 17.9% for PR3) as it is more reasonable to expect.  

-  We conclude that PR1 appears to be least appropriate as a method for determining the true PR class for
 a set of  profiles that fall within a TMI Field-Of-View.  

PR1$$$$3.4%$
RI$$$$$$$3.3%$

PR2$$$$2.4%$
RI$$$$$$$$3.3%$

PR3$$$$2.9%$
RI$$$$$$$$3.3%$

CONV$–$RIv18$
PR1$$$10.6%$
RI$$$$$$$19.7%$

PR2$$$$$9.6%$
RI$$$$$$19.7%$

PR3$$11.5%$
RI$$$$$$19.7%$

STR$–$RIv18$
PR1$$$$$$0.8%$
RI$$$$$$$13.9%$

PR2$$$20.7%$
RI$$$$$$$13.9%$

PR3$$$17.9%$
RI$$$$$$$13.9%$

MIXED$–$RIv18$
PR1$$75.5%$
RI$$$$$$66.4%$

PR2$$72.3%$
RI$$$$$$66.4%$

PR3$$72.1%$
RI$$$$$66.4%$

Clear$–$RIv18$

3. Put all of these 
(~9) PR profiles 

into two 
“buckets”: one is 

the appropriate 
class based on the 
radar classification 

and the other one 
is the appropriate 

class based on the 
PMW_CLASS 
classification  

NOTE: the PR-based classification carries its own 
uncertainties.   

-  This uncertainty is further increased through the choices and assumptions that are 
necessarily employed when determining the classification that is representative for 
a set of PR profiles that all fall within a given TMI footprint.  

-  Acknowledging all these sources of uncertainty we have chosen to use as metrics 
a number of different criteria  

-  Contingency Tables - the statistics of two corresponding datasets in terms of 
the ability of the dataset under evaluation to accurately detect the classes in 
the dataset considered to be the “truth”.  

-  Given the PR-based map, a mask is defined such that all the points 
where the rain C* is present (according to the PR classification) are set to 
1, and the rest to 0; 

-  similarly for the RI-based (PMW_CLASS) map, a mask is defined such 
that all the points where the rain C* is present (according to the 
PMW_CLASS classification) are set to 1, and the rest to 0; 

-  the following probabilities are then defined (“Pr” stands for “Proportion or 
probability”) 

 

-  Contoured Frequency by Altitude Diagrams (CFADs) analysis (Yuter and 
Houze, 1995) 

-  Frequency of occurrence for each of the precipitating types as defined either 
by PR or by our algorithm – the PMW_CLASS   
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Developing	  a	  passive	  microwave	  algorithm	  for	  	  
precipita)on	  detec)on	  and	  classifica)on	  :	  The TMI-specific algorithm - LDA 

CFADs:  evaluation of the LDA version (v26) of 
PMW_CLASS when compared to PR. Shown are 
the statistics for the convective and the stratiform 
classes only.  Region of South Korea 

V26 (LDA) 

V26 (LDA) 

Developing	  a	  passive	  microwave	  algorithm	  for	  	  
precipita)on	  detec)on	  and	  classifica)on	  :	  The GMI-specific algorithm - LDA 

DPR3: CONVECTIVE 
PMW_CLASS V28: CONVECTIVE 

V28 
LDA                

GMI 
June 2014 

DPR3:    
 STRATIFORM 

PMW_CLASS V28:  STRATIFORM 

V27 
LDA        

DPR3:  CONVECTIVE 
PMW_CLASS V27: CONVECTIVE 

DPR3:  STRATIFORM 
PMW_CLASS V27: STRATIFORM 

GMI 
June 2014z 

! Validation of the classifications.   
! Used GMI/DPR (and TMI/PR) collocated observations and compared the CFADs of the reflectivity profiles that fall within the convective versus the stratiform (or mixed) 

classes as determined independently by either DPR (PR) or by the PMW_CLASS algorithm (from GMI or TMI).  
! Our extensive analyses and validation reveal that V28, the better of the two latest GMI version, compares very well to classification produced by DPR.   The difference from 

V27 (optimized or TMI) are most pronounced in the convective region, where the CFAD of V28 is much closer to that of DPR, reflecting the much improved capture of the 
weak and shallow convective precipitation.   

! Compared the maps and the percentage breakdown between convective, stratiform and mixed rain types as determined independently by either the active (DPR) or the 
passive (PMW_CLASS) algorithms. Used GPM observations of summer time precipitation in the region around Korea (June – August of 2014).  Comparisons show that: 
!  both versions of the PWM_CLASS algorithm depict precipitation much more frequently than the DPR algorithms.  However, the detection of this higher occurrence of 

precipitation is actually a desirable feature, considering that the radar’s limited sensitivity is likely leading to under-detection.  Furthermore, the ~15% occurrence of 
precipitation, as detected by the PMW_CLASS algorithm, is in a good agreement with analysis from other passive microwave observations of precipitation. 

! while the PMW_CLASS algorithms detect precipitation with higher frequency, the patterns of the precipitating regions match very well with those detected by DPR.  
This is true for the area of precipitation, as well as for the geographical distribution of the different classes of precipitation.  

PMW_CLASS: V23 (GMI; June 2014) PMW_CLASS: V27-LDA (GMI; June 2014) 

PMW_CLASS: V28 (GMI: June 2014) DPR2 and DPR3:  “ Sure” (GMI; 2014)  

Probability of Rain Probability of Mix|Rain 

Probability of Str|Rain Probability of Conv|Rain 

Probability of Rain Probability of Mix|Rain 

Probability of Str|Rain Probability of Conv|Rain 

PR2:  “ Sure” (TMI; 2010)  PMW_CLASS: V26 (TMI; June 2010) 

PMW_CLASS: V27 (GMI: June 2014) DPR2:  “ Sure” (GMI; 2014)  

Probability of Rain Probability of Mix|Rain 

Probability of Str|Rain Probability of Conv|Rain 

-‐  The	  Rain	  Indicator	  –	  a	  mul5-‐channel	  depic5on	  of	  the	  storm	  structure	  
Hristova-‐Veleva	  et	  al.,	  2013:	  “Revealing	  the	  Winds	  Under	  the	  Rain.	  Part	  I.	  Passive	  Microwave	  Rain	  Retrievals	  
Using	  a	  New,	  Observa?ons-‐Based,	  Parameteriza?on	  of	  Sub-‐Satellite	  Rain	  Variability	  and	  Intensity:	  Algorithm	  
Descrip?on”,	  2013,	  JAMC	  52,	  2828–2848	  

Microwave	  signals	  at	  the	  top	  of	  the	  atmosphere	  can	  be	  classified	  into	  two	  categories:	  
–  emission	  signal	  -‐	  dominant	  at	  lower	  frequencies;	  warming;	  be?er	  for	  light	  rain.	  	  Strong	  emission	  in	  the	  atmosphere	  

reduces	  the	  polariza#on	  difference	  (PD)	  in	  the	  ocean	  surface	  radia#on.	  Hence,	  PD	  	  is	  representa#ve	  of	  the	  
atmospheric	  emission.	  	  

–  sca?ering	  signal	  -‐dominant	  at	  higher	  frequencies;	  cooling;	  be?er	  for	  heavy	  rain;	  PCT	  	  
•  Hence,	  both	  signals	  have	  to	  be	  incorporated	  to	  cover	  the	  en)re	  rainfall	  spectrum.	  

89 GHz 89 GHz 

19 GHz 36 GHz 
Polarization Difference Polarization Difference 

Polarization Difference Polarization Corrected Temp. 


